Problem

Source: Problem 6 of Russian Regional Olympiad 2010 Grade 9

Tags: geometry, circumcircle, geometry proposed



Let points $A$, $B$, $C$ lie on a circle, and line $b$ be the tangent to the circle at point $B$. Perpendiculars $PA_1$ and $PC_1$ are dropped from a point $P$ on line $b$ onto lines $AB$ and $BC$ respectively. Points $A_1$ and $C_1$ lie inside line segments $AB$ and $BC$ respectively. Prove that $A_1C_1$ is perpendicular to $AC$.