Problem

Source: Problem 1 of Russian Regional Olympiad 2010 Grade 9

Tags: quadratics, algebra, polynomial, algebra proposed



Three quadratic polynomials $f_1(x) = x^2+2a_1x+b_1$, $f_2(x) = x^2+2a_2x+b_2$, $f_3(x) = x^2 + 2a_3x + b_3$ are such that $a_1a_2a_3 = b_1b_2b_3 > 1$. Prove that at least one polynomial has two distinct roots.