Problem

Source: Problem 8 of Russian Regional Olympiad 2010 Grade 9

Tags: quadratics, number theory, prime numbers, number theory proposed



For every positive integer $n$, let $S_n$ be the sum of the first $n$ prime numbers: $S_1 = 2, S_2 = 2 + 3 = 5, S_3 = 2 + 3 + 5 = 10$, etc. Can both $S_n$ and $S_{n+1}$ be perfect squares?