Problem

Source: Middle European Mathematical Olympiad 2011 - Team Compt. T-2

Tags: inequalities, Cauchy Inequality, inequalities unsolved



Let $a, b, c$ be positive real numbers such that \[\frac{a}{1+a}+\frac{b}{1+b}+\frac{c}{1+c}=2.\] Prove that \[\frac{\sqrt a + \sqrt b+\sqrt c}{2} \geq \frac{1}{\sqrt a}+\frac{1}{\sqrt b}+\frac{1}{\sqrt c}.\]