Problem

Source: Problem 3 of Russian Regional Olympiad 2011, grade 10

Tags: number theory proposed, number theory



$a_1,a_2,\dots,a_{14}$ are different positive integers. All 196 numbers of the form $a_k+a_l$ with $1\leq k,l\leq 14$ are written on a board. Is it possible that for any two-digit combination, there exists a number among all 196 that ends with that combination (i.e., there exist numbers ending with $00, 01, \dots, 99$)? (Author: P. Kozhevnikov)