Problem

Source: Problem 3 of Russian Regional Olympiad 2011, grade 11

Tags: geometry, rectangle, circumcircle, geometry proposed



Point $K$ lies on the circumcircle of a rectangle $ABCD$. Line $CK$ intersects line segment $AD$ at point $M$ so that $AM:MD=2$. $O$ is the center the rectangle. Prove that the centroid of triangle $OKD$ belongs to the circumcircle of triangle $COD$. (Author: V. Shmarov)