Problem

Source: 2011 Czech & Slovak MO, District Round, Category A

Tags: geometry, geometric transformation, reflection, geometry unsolved



Let $ABC$ denote a triangle with area $S$. Let $U$ be any point inside the triangle whose vertices are the midpoints of the sides of triangle $ABC$. Let $A'$, $B'$, $C'$ denote the reflections of $A$, $B$, $C$, respectively, about the point $U$. Prove that hexagon $AC'BA'CB'$ has area $2S$.