Let $ABC$ be an acute triangle with altitudes $AD$, $BE$, $CF$ where $D$, $E$, $F$ lie on $BC$, $AC$, $AB$, respectively. Let $M$ be the midpoint of $BC$. The circumcircle of triangle $AEF$ cuts the line $AM$ at $A$ and $X$. The line $AM$ cuts the line $CF$ at $Y$. Let $Z$ be the point of intersection of $AD$ and $BX$. Show that the lines $YZ$ and $BC$ are parallel.
Problem
Source: XVIII Cono Sur Mathematical Olympiad (2007)
Tags: geometry, circumcircle, geometric transformation, reflection, symmetry, projective geometry, power of a point
10.08.2011 22:18
Hint: take the Carnot circle $\odot BCH$ ($H$ - the orthocenter) and see that it passes through the reflection of $A$ in $M$, hence $X$ belongs to this circle as well. Subsequently, by symmetry about $BC$, we get $HZYX$ is cyclic, hence the two lines are parallel. Best regards, sunken rock
12.08.2011 01:08
HXBC is cyclic, this is a very traditional problem, if not noticed that , maybe the Menelause theorem works, but the calculation must be tough
21.08.2011 15:45
Because $BDHF,MDHX$ are both cyclic, so $AF \cdot AB = AH \cdot AD =AX \cdot AM$, and $BMXF$ is cyclic, hence $\angle ZXY = \angle BXM = \angle BFM = \angle FBM = \angle DHC = \angle ZHY$, so $XYZH$ is cyclic, and we have $\angle XYZ = \angle AHX = \angle XMD$, so $YZ\parallel BC$.
Attachments:
07.05.2013 05:46
Let $P = AM \cap BE$, and note that \[{YZ \parallel BC \iff Y(Z,M;B,C) = -1 \iff B(Z, A; YB\cap AD, H) = - 1 \iff (X, A; Y, P) = -1,}\] which is true iff $P$ on the polar $\rho$ of $Y$ w.r.t. $(AEF).$ But the polar of $M$ is $EF$, hence $AA \cap EF \in \rho.$ But also $AH \cap XF \in \rho$, hence by Pascal's theorem on $AAHEFX$ we get $P \in \rho$, as desired.
06.04.2015 10:36
Dear Mathlinkers, 1. T the second point of intersection of BX with the circle with diameter AH 2. the tangent to this circle at F goes through M 3. by using two time the Pascal theorem in two degenerated case, we are done. Sincerely Jean-Louis
06.01.2019 13:15
sunken rock wrote: Hint: take the Carnot circle $\odot BCH$ ($H$ - the orthocenter) and see that it passes through the reflection of $A$ in $M$, hence $X$ belongs to this circle as well. Subsequently, by symmetry about $BC$, we get $HZYX$ is cyclic, hence the two lines are parallel. Best regards, sunken rock Is there any motivation to take the symmetric of $A$ in $M$?
06.01.2019 16:45
Here's my solution: Let $H$ be the orthocenter of $\triangle ABC$, and let $BX \cap \odot (AEF)=K$. Then, by Pascal on $AHFKXA$, we get that the given statement is equivalent to proving that $FK$ is parallel to $BC$. But this directly follows from $$\angle AFK=\angle MXB=\angle ABC \Rightarrow FK \parallel BC$$where we use the fact that $\odot (AXB)$ is tangent to $BC$ (as $X$ is the $A$-Humpty point). Hence, done. $\blacksquare$
07.01.2019 07:16
$\text {Lemma}$:$FM$ and $EM$ is tangent to the $\odot (AEF)$. $\text {proove}$; Just from the nine point circle theorem, the midpoint of $AH$ and $M$ are diametrically opposite points and hence prof the lemma. Then, we can easily observe that $BFMD$ and $HXDM$ are conclic and so $\angle AFX=\angle 180-BFX =\angle XMD$ and hence, $BXFM$ is conclic. But $MFC=90-\angle B$ and $BFC=90$ and so $BFM=\angle B$ and $BXM=\angle B$ and $DHX=180-(\angle A+\angle C$ =$\angle B$ . Hence, $HXZY$ is conclic and so $ZY \parallel DM$.
27.06.2020 13:33
Dear Mathlinkers, http://jl.ayme.pagesperso-orange.fr/Docs/Orthique%20encyclopedie%207.pdf p. 51... Sincerely Jean-Louis
16.08.2020 00:06
[asy][asy] /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */ import graph; size(20cm); real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -17.82556118670199, xmax = 21.4367130204896, ymin = -12.194589935043286, ymax = 12.33791604016911; /* image dimensions */ pen zzttqq = rgb(0.6,0.2,0); draw((-4.087697920306253,9.765832300575541)--(-8.8,-2.42)--(7.48,-5.14)--cycle, linewidth(1) + zzttqq); /* draw figures */ draw((-4.087697920306253,9.765832300575541)--(-8.8,-2.42), linewidth(1) + zzttqq); draw((-8.8,-2.42)--(7.48,-5.14), linewidth(1) + zzttqq); draw((7.48,-5.14)--(-4.087697920306253,9.765832300575541), linewidth(1) + zzttqq); draw((-7.597196971953187,0.6904024620075927)--(7.48,-5.14), linewidth(1)); draw((-4.087697920306253,9.765832300575541)--(-6.196339804616934,-2.8550095658133876), linewidth(1)); draw((-8.8,-2.42)--(0.04324082640485509,4.4428129213838625), linewidth(1)); draw(circle((-4.906323862741855,4.866115262762441), 4.967632784764244), linewidth(1)); draw((-4.087697920306253,9.765832300575541)--(-0.66,-3.78), linewidth(1)); draw((-8.8,-2.42)--(-1.8557556582552952,0.9454763972151179), linewidth(1)); draw((xmin, -0.16707616707616704*xmin-1.9923723953296533)--(xmax, -0.16707616707616704*xmax-1.9923723953296533), linewidth(1)); /* line */ draw((-4.906323862741856,4.866115262762442)--(-1.8557556582552952,0.9454763972151179), linewidth(1)); draw((-7.597196971953187,0.6904024620075927)--(-1.8557556582552952,0.9454763972151179), linewidth(1)); draw(circle((-4.589717049654546,-2.26036528249117), 4.213308173514461), linewidth(1)); draw((-7.597196971953187,0.6904024620075927)--(-0.66,-3.78), linewidth(1)); draw(circle((4.146869312332204,-0.0496204394234191), 6.084547990755648), linewidth(1)); draw((0.04324082640485509,4.4428129213838625)--(-1.8557556582552952,0.9454763972151179), linewidth(1)); draw(circle((-3.4432013171488105,-0.9159615417255732), 2.44641266356836), linewidth(1)); draw((-5.724949805177459,-0.03360177505065799)--(-1.8557556582552952,0.9454763972151179), linewidth(1)); /* dots and labels */ dot((-4.087697920306253,9.765832300575541),dotstyle); label("$A$", (-3.993949554233843,10.028370498569616), NE * labelscalefactor); dot((-8.8,-2.42),dotstyle); label("$B$", (-8.690025488819504,-2.1608976376499314), NE * labelscalefactor); dot((7.48,-5.14),dotstyle); label("$C$", (7.5794397708925665,-4.881029053311557), NE * labelscalefactor); dot((-6.196339804616934,-2.8550095658133876),linewidth(4pt) + dotstyle); label("$D$", (-6.098202158802281,-2.648468363098713), NE * labelscalefactor); dot((-7.597196971953187,0.6904024620075927),linewidth(4pt) + dotstyle); label("$F$", (-7.483929483761984,0.8928348006871765), NE * labelscalefactor); dot((-5.724949805177459,-0.03360177505065799),linewidth(4pt) + dotstyle); label("$H$", (-5.610631433353497,0.1743095210784452), NE * labelscalefactor); dot((0.04324082640485509,4.4428129213838625),linewidth(4pt) + dotstyle); label("$E$", (0.13757080351638276,4.639430901504133), NE * labelscalefactor); dot((-0.66,-3.78),linewidth(4pt) + dotstyle); label("$M$", (-0.5552928589634688,-3.5722865797385106), NE * labelscalefactor); dot((-1.8557556582552952,0.9454763972151179),linewidth(4pt) + dotstyle); label("$X$", (-1.7613888640209883,1.149450971976009), NE * labelscalefactor); dot((-1.1614528291201611,-1.7983213084004863),linewidth(4pt) + dotstyle); label("$Y$", (-1.0685252015411366,-1.5963420608144998), NE * labelscalefactor); dot((-5.88785741699907,-1.0086517458064685),linewidth(4pt) + dotstyle); label("$Z$", (-5.79026275325568,-0.8008319298191187), NE * labelscalefactor); dot((-4.906323862741856,4.866115262762442),linewidth(4pt) + dotstyle); label("$G$", (-4.815121302358111,5.075678392695147), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); /* end of picture */ [/asy][/asy] We denote with $x=\angle DAM$. Miquel gives us two cyclic quads $BFXM$ and $CMXE$. Thus we have that: $$\angle MBX = \angle MFX = 90-\angle B + x = \angle FAX$$we have this because of the three tangents lemma. The problem will be killed when we show that $YZHX$ is a cyclic quad. By an easy angle chase we have that $\angle XZH = \angle B - x$ and we have that $\angle FYA = \angle B - x $ (look at the triangle $YFA$). thus the quad $XYZH$ is cylic. Now we have that $\angle YZX=\angle YHX = \angle FAX = \angle MBX = 90-\angle B+x$.Thus we have that $ZY \parallel BC$
16.08.2020 10:19
Very nice problem and solitions!
17.08.2020 16:50
See my solution on my Youtube channel here: https://www.youtube.com/watch?v=CZkZxd-fC2o
01.07.2021 04:14
Mehhhhhhhh Let $H$ be the orthocenter, just remembering: if you know Humpty Dumpty stories, you're done. Opinion:
Hint 1:
Hint 2:
Hint 3:
All of those hints are well known facts, note that $YZ || BC \Leftrightarrow YXHZ$ cyclic, and this is true iff $\angle XZH=\angle HYX$, and hence we just need to prove $(ABX)$ tangent to $BC$, by easy angle chase ($\angle XMD=\angle XHA$, and $\angle BAM=90-\angle HYX$, which is equal to $\angle 90-DZB$ iff the tangency is true). Now just $ME^2=MB^2=MX.MA$ finishes the problem.
18.12.2022 04:05
half line sol with proj: let $K = BX \cap CF$. We know that $(A,X;E,F) \stackrel{H}{=} (B,K;X,Z) \stackrel{Y}{=} (B,C;M, YZ \cap BC) = -1 \Rightarrow YZ // BC$.