Problem

Source: 2011 China Girls Mathematical Olympiad P4

Tags: probability, expected value, combinatorics unsolved, combinatorics



A tennis tournament has $n>2$ players and any two players play one game against each other (ties are not allowed). After the game these players can be arranged in a circle, such that for any three players $A,B,C$, if $A,B$ are adjacent on the circle, then at least one of $A,B$ won against $C$. Find all possible values for $n$.