Problem

Source: Turkish NMO 1996, 6. Problem

Tags: function, induction, algebra proposed, algebra



Show that there is no function $f:{{\mathbb{R}}^{+}}\to {{\mathbb{R}}^{+}}$ such that $f(x+y)>f(x)(1+yf(x))$ for all $x,y\in {{\mathbb{R}}^{+}}$.