Problem

Source: Turkish NMO 1996, 4. Problem

Tags: geometry proposed, geometry



A circle is tangent to sides $AD,\text{ }DC,\text{ }CB$ of a convex quadrilateral $ABCD$ at $\text{K},\text{ L},\text{ M}$ respectively. A line $l$, passing through $L$ and parallel to $AD$, meets $KM$ at $N$ and $KC$ at $P$. Prove that $PL=PN$.