Problem

Source: Turkish NMO 1996, 1. Problem

Tags: number theory proposed, number theory



Let $({{A}_{n}})_{n=1}^{\infty }$ and $({{a}_{n}})_{n=1}^{\infty }$ be sequences of positive integers. Assume that for each positive integer $x$, there is a unique positive integer $N$ and a unique $N-tuple$ $({{x}_{1}},...,{{x}_{N}})$ such that $0\le {{x}_{k}}\le {{a}_{k}}$ for $k=1,2,...N$, ${{x}_{N}}\ne 0$, and $x=\sum\limits_{k=1}^{N}{{{A}_{k}}{{x}_{k}}}$. (a) Prove that ${{A}_{k}}=1$ for some $k$; (b) Prove that ${{A}_{k}}={{A}_{j}}\Leftrightarrow k=j$; (c) Prove that if ${{A}_{k}}\le {{A}_{j}}$, then $\left. {{A}_{k}} \right|{{A}_{j}}$.