Problem

Source: XVIII Tuymaada Mathematical Olympiad (2011), Junior Level

Tags: geometry, circumcircle, geometry unsolved



An excircle of triangle $ABC$ touches the side $AB$ at $P$ and the extensions of sides $AC$ and $BC$ at $Q$ and $R$, respectively. Prove that if the midpoint of $PQ$ lies on the circumcircle of $ABC$, then the midpoint of $PR$ also lies on that circumcircle.