Problem

Source: USA TSTST 2011/2012 P8

Tags: floor function, number theory



Let $x_0, x_1, \dots , x_{n_0-1}$ be integers, and let $d_1, d_2, \dots, d_k$ be positive integers with $n_0 = d_1 > d_2 > \cdots > d_k$ and $\gcd (d_1, d_2, \dots , d_k) = 1$. For every integer $n \ge n_0$, define \[ x_n = \left\lfloor{\frac{x_{n-d_1} + x_{n-d_2} + \cdots + x_{n-d_k}}{k}}\right\rfloor. \] Show that the sequence $\{x_n\}$ is eventually constant.