Problem

Source: USA TST 2011/2012 P6

Tags: inequalities, USAMO, function, quadratics



Let $a, b, c$ be positive real numbers in the interval $[0, 1]$ with $a+b, b+c, c+a \ge 1$. Prove that \[ 1 \le (1-a)^2 + (1-b)^2 + (1-c)^2 + \frac{2\sqrt{2} abc}{\sqrt{a^2+b^2+c^2}}. \]