Problem

Source: USA TSTST 2011/2012 P2

Tags: perpendicular bisector



Two circles $\omega_1$ and $\omega_2$ intersect at points $A$ and $B$. Line $\ell$ is tangent to $\omega_1$ at $P$ and to $\omega_2$ at $Q$ so that $A$ is closer to $\ell$ than $B$. Let $X$ and $Y$ be points on major arcs $\overarc{PA}$ (on $\omega_1$) and $AQ$ (on $\omega_2$), respectively, such that $AX/PX = AY/QY = c$. Extend segments $PA$ and $QA$ through $A$ to $R$ and $S$, respectively, such that $AR = AS = c\cdot PQ$. Given that the circumcenter of triangle $ARS$ lies on line $XY$, prove that $\angle XPA = \angle AQY$.