Problem

Source: USA TST 2011 P9

Tags: inequalities, vector, pigeonhole principle, algebra unsolved, algebra



Determine whether or not there exist two different sets $A,B$, each consisting of at most $2011^2$ positive integers, such that every $x$ with $0 < x < 1$ satisfies the following inequality: \[\left| \sum_{a \in A} x^a - \sum_{b \in B} x^b \right| < (1-x)^{2011}.\]