Problem

Source: USA TST 2011 P5

Tags: induction, modular arithmetic, function, limit, algebra, polynomial, binomial theorem



Let $c_n$ be a sequence which is defined recursively as follows: $c_0 = 1$, $c_{2n+1} = c_n$ for $n \geq 0$, and $c_{2n} = c_n + c_{n-2^e}$ for $n > 0$ where $e$ is the maximal nonnegative integer such that $2^e$ divides $n$. Prove that \[\sum_{i=0}^{2^n-1} c_i = \frac{1}{n+2} {2n+2 \choose n+1}.\]