Pentagon $ABCDE$ has circle $S$ inscribed into it. Side $BC$ is tangent to $S$ at point $K$. If $AB=BC=CD$, prove that angle $EKB$ is a right angle.
Problem
Source:
Tags: geometry, angle bisector, geometry proposed
23.07.2011 14:24
If $L, M, N, P$ are the tangency points of $AB, CD, DE, EA$ respectively with the incircle of center $I$, then $\measuredangle BIK=\measuredangle DIM=\measuredangle DIN=\measuredangle BIL=\alpha$ and $\measuredangle AIL=\measuredangle AIP=\measuredangle CIK=\measuredangle CIM=\beta$, then $\measuredangle KIA =\measuredangle KIN =2(\alpha+\beta)$. As $E$ lies on the angle bisector of $\angle PIN$, the result follows. Best regards, sunken rock
11.01.2016 10:39
It must be $$KIP = KIN$$
26.05.2023 19:30
Let the tangent points of the circle to the pentagon be $J$ to $AB$, $K$ to $BC$, $L$ to $CD$, $M$ to $DE$, and $N$ to $EA$. Then \[AJ+JB=BK+KC\rightarrow NA=AJ=KC=CL.\]Similarly, \[JB=BK=LD=DM.\]Therefore, \[\triangle BKS\cong \triangle BJS\cong \triangle DLS\cong \triangle DMS\]by SAS. So $\angle ABK=\angle CDM$, and similarly $\angle NAB=\angle KCD$. So quadrilaterals $NABK$ and $KCDM$ are congruent, meaning that $KM=KN$. Since $SM=SN$ and $EM=EN$ as well, $S,E,K$ are all on the perpendicular bisector of $MN$. $\blacksquare$