Problem

Source: XIX Olimpíada Matemática Rioplatense (2010)

Tags: inequalities, number theory, number theory unsolved



Suppose $a$, $b$, $c$, and $d$ are distinct positive integers such that $a^b$ divides $b^c$, $b^c$ divides $c^d$, and $c^d$ divides $d^a$. (a) Is it possible to determine which of the numbers $a$, $b$, $c$, $d$ is the smallest? (b) Is it possible to determine which of the numbers $a$, $b$, $c$, $d$ is the largest?