Problem

Source:

Tags: function, algebra, Functional inequality, IMO, IMO Shortlist



Let $f : \mathbb R \to \mathbb R$ be a real-valued function defined on the set of real numbers that satisfies \[f(x + y) \leq yf(x) + f(f(x))\] for all real numbers $x$ and $y$. Prove that $f(x) = 0$ for all $x \leq 0$. Proposed by Igor Voronovich, Belarus