Problem

Source: Bulgaria MO 2011

Tags: number theory, relatively prime, number theory proposed



For each natural number $a$ we denote $\tau (a)$ and $\phi (a)$ the number of natural numbers dividing $a$ and the number of natural numbers less than $a$ that are relatively prime to $a$. Find all natural numbers $n$ for which $n$ has exactly two different prime divisors and $n$ satisfies $\tau (\phi (n))=\phi (\tau (n))$.