Problem

Source:

Tags: modular arithmetic, number theory unsolved, number theory



Let $n$ be a natural number, for which we define $S(n)=\{1+g+g^2+...+g^{n-1}|g\in{\mathbb{N}},g\geq2\}$ $a)$ Prove that: $S(3)\cap S(4)=\varnothing$ $b)$ Determine: $S(3)\cap S(5)$