Let $a,b,c$ be real positive numbers. Prove that the following inequality holds: \[{ \sum_{\rm cyc}\sqrt{5a^2+5c^2+8b^2\over 4ac}\ge 3\cdot \root 9 \of{8(a+b)^2(b+c)^2(c+a)^2\over (abc)^2} }\]
Source:
Tags: inequalities, inequalities unsolved
Let $a,b,c$ be real positive numbers. Prove that the following inequality holds: \[{ \sum_{\rm cyc}\sqrt{5a^2+5c^2+8b^2\over 4ac}\ge 3\cdot \root 9 \of{8(a+b)^2(b+c)^2(c+a)^2\over (abc)^2} }\]