Problem

Source: IMO ShortList 1990, Problem 5 (FRA 1)

Tags: geometry, incenter, vector, Euler, trigonometry, orthocenter, IMO Shortlist



Given a triangle $ ABC$. Let $ G$, $ I$, $ H$ be the centroid, the incenter and the orthocenter of triangle $ ABC$, respectively. Prove that $ \angle GIH > 90^{\circ}$.