Problem

Source:

Tags: analytic geometry, modular arithmetic, combinatorics proposed, combinatorics



The cells of a square $2011 \times 2011$ array are labelled with the integers $1,2,\ldots, 2011^2$, in such a way that every label is used exactly once. We then identify the left-hand and right-hand edges, and then the top and bottom, in the normal way to form a torus (the surface of a doughnut). Determine the largest positive integer $M$ such that, no matter which labelling we choose, there exist two neighbouring cells with the difference of their labels at least $M$. (Cells with coordinates $(x,y)$ and $(x',y')$ are considered to be neighbours if $x=x'$ and $y-y'\equiv\pm1\pmod{2011}$, or if $y=y'$ and $x-x'\equiv\pm1\pmod{2011}$.) (Romania) Dan Schwarz