Problem

Source:

Tags: function, number theory proposed, number theory



Given a positive integer $\displaystyle n = \prod_{i=1}^s p_i^{\alpha_i}$, we write $\Omega(n)$ for the total number $\displaystyle \sum_{i=1}^s \alpha_i$ of prime factors of $n$, counted with multiplicity. Let $\lambda(n) = (-1)^{\Omega(n)}$ (so, for example, $\lambda(12)=\lambda(2^2\cdot3^1)=(-1)^{2+1}=-1$). Prove the following two claims: i) There are infinitely many positive integers $n$ such that $\lambda(n) = \lambda(n+1) = +1$; ii) There are infinitely many positive integers $n$ such that $\lambda(n) = \lambda(n+1) = -1$. (Romania) Dan Schwarz