Problem

Source: USA TST 2002; Valentin Vornicu's problem book

Tags: inequalities, trigonometry, function, Trigonometric inequality



Let $ ABC$ be a triangle, and $ A$, $ B$, $ C$ its angles. Prove that \[ \sin\frac{3A}{2}+\sin\frac{3B}{2}+\sin\frac{3C}{2}\leq \cos\frac{A-B}{2}+\cos\frac{B-C}{2}+\cos\frac{C-A}{2}. \]