Problem

Source:

Tags: floor function, combinatorics proposed, combinatorics



Let $X$ be an $n$-element set and let $A_1,\ldots ,A_m$ be subsets of $X$ such that i) $|A_i|=3$ for each $i=1,\ldots ,m$. ii) $|A_i\cap A_j|\le 1$ for any two distinct indices $i,j$. Show that there exists a subset of $X$ with at least $\lfloor\sqrt{2n}\rfloor$ elements which does not contain any of the $A_i$’s.