Problem

Source: Italy TST 1999

Tags: function, algebra proposed, algebra



(a) Find all strictly monotone functions $f:\mathbb{R}\rightarrow\mathbb{R}$ such that \[f(x+f(y))=f(x)+y\quad\text{for all real}\ x,y. \] (b) If $n>1$ is an integer, prove that there is no strictly monotone function $f:\mathbb{R}\rightarrow\mathbb{R}$ such that \[ f(x+f(y))=f(x)+y^n\quad \text{for all real}\ x, y.\]