In the acute triangle $ABC$, the bisectors of $A,B$ and $C$ intersect the circumcircle again at $A_1,B_1$ and $C_1$, respectively. Let $M$ be the point of intersection of $AB$ and $B_1C_1$, and let $N$ be the point of intersection of $BC$ and $A_1B_1$. Prove that $MN$ passes through the incentre of $\triangle ABC$.