Problem

Source: TST USA 2003

Tags: geometry, ratio, TST, USA



Let $ABC$ be a triangle and let $P$ be a point in its interior. Lines $PA$, $PB$, $PC$ intersect sides $BC$, $CA$, $AB$ at $D$, $E$, $F$, respectively. Prove that \[ [PAF]+[PBD]+[PCE]=\frac{1}{2}[ABC] \] if and only if $P$ lies on at least one of the medians of triangle $ABC$. (Here $[XYZ]$ denotes the area of triangle $XYZ$.)