Problem

Source:

Tags: function, floor function, induction, algebra proposed, algebra



Let $f: \mathbb N \to \mathbb N$ be a function such that $f(1)=1$ and \[f(n)=n - f(f(n-1)), \quad \forall n \geq 2.\]Prove that $f(n+f(n))=n $ for each positive integer $n.$