Find the number of ordered quadruples $(x,y,z,w)$ of integers with $0\le x,y,z,w\le 36$ such that ${{x}^{2}}+{{y}^{2}}\equiv {{z}^{3}}+{{w}^{3}}\text{ (mod 37)}$.
Source:
Tags: number theory proposed, number theory
Find the number of ordered quadruples $(x,y,z,w)$ of integers with $0\le x,y,z,w\le 36$ such that ${{x}^{2}}+{{y}^{2}}\equiv {{z}^{3}}+{{w}^{3}}\text{ (mod 37)}$.