Problem-2: Given a circle with center $O$, the two tangent lines from a point $S$ outside the circle touch the circle at points $P$ and $Q$. Line $SO$ intersects the circle at $A$ and $B$, with $B$ closer to $S$. Let $X$ be an interior point of minor arc $PB$, and let line $OS$ intersect lines $QX$ and $PX$ at $C$ and $D$, respectively. Prove that $\frac{1}{\left| AC \right|}+\frac{1}{\left| AD \right|}=\frac{2}{\left| AB \right|}$.
Problem
Source:
Tags: geometry proposed, geometry
Luis González
24.12.2010 00:32
Arcs $BP,BQ$ are equal $\Longrightarrow$ $XB,XA$ bisect $\angle CXD$ internally and externally $\Longrightarrow$ $\Longrightarrow$ $(C,D,B,A)=-1$ $\Longrightarrow \ \frac{BC}{AC}=\frac{BD}{AD} \Longrightarrow \ \frac{AB}{AC}-2=\frac{BD}{AD}-1=-\frac{AB}{AD}$ $\Longrightarrow \ \frac{2}{AB}=\frac{1}{AC}+\frac{1}{AD}$
sunken rock
23.04.2011 22:03
Or $\frac{BC}{BD}=\frac{AC}{AD} \leftrightarrow \frac{AB-AC}{AD-AB}=\frac{AC}{AD} \leftrightarrow AB\cdot (AC+AD)=2\cdot AC\cdot AD \leftrightarrow$ to relation to prove. Best regards, sunken rock
AlastorMoody
24.03.2020 13:00
Turkey NMO 1999 P2 wrote:
Given a circle with center $O$, the two tangent lines from a point $S$ outside the circle touch the circle at points $P$ and $Q$. Line $SO$ intersects the circle at $A$ and $B$, with $B$ closer to $S$. Let $X$ be an interior point of minor arc $PB$, and let line $OS$ intersect lines $QX$ and $PX$ at $C$ and $D$, respectively. Prove that
$$\frac{1}{\left| AC \right|}+\frac{1}{\left| AD \right|}=\frac{2}{\left| AB \right|}$$
Solution: \begin{align*} -1 = (P,Q ;A,B) \stackrel{X}{=} (D,C ;A,B) \implies AC \cdot BD= AD \cdot BC \end{align*}Observe,
\begin{align*} \frac{2}{AB} =\frac{1}{AC} + \frac{1}{AD} &\Longleftrightarrow 2 BC \cdot BD = AB \left( BD -BC \right) \\
&\Longleftrightarrow BC \cdot BD = AC \cdot BD - AC \cdot BC -BC^2 \\
&\Longleftrightarrow BC \cdot BD = AD \cdot BC -AC \cdot BC - BC^2 \\
&\Longleftrightarrow BD=AD-AC-BC \\
&\Longleftrightarrow BD +BC=CD \\
\end{align*}Since, the Latter holds, thus the former holds too $\qquad \blacksquare$