Problem

Source:

Tags: geometry proposed, geometry



Problem-2: Given a circle with center $O$, the two tangent lines from a point $S$ outside the circle touch the circle at points $P$ and $Q$. Line $SO$ intersects the circle at $A$ and $B$, with $B$ closer to $S$. Let $X$ be an interior point of minor arc $PB$, and let line $OS$ intersect lines $QX$ and $PX$ at $C$ and $D$, respectively. Prove that $\frac{1}{\left| AC \right|}+\frac{1}{\left| AD \right|}=\frac{2}{\left| AB \right|}$.