Problem

Source:

Tags: inequalities proposed, inequalities



Prove that for all $n \in \mathbb{Z^+}$ and for all positive real numbers satisfying $a_1a_2...a_n=1$ \[ \displaystyle\sum_{i=1}^{n} \frac{a_i}{\sqrt{{a_i}^4+3}} \leq \frac{1}{2}\displaystyle\sum_{i=1}^{n} \frac{1}{a_i} \]