Problem

Source:

Tags: geometry, circumcircle, ratio, geometry proposed



Let $P$ be an interior point of the triangle $ABC$ which is not on the median belonging to $BC$ and satisfying $\angle CAP = \angle BCP. \: BP \cap CA = \{B'\} \: , \: CP \cap AB = \{C'\}$ and $Q$ is the second point of intersection of $AP$ and the circumcircle of $ABC. \: B'Q$ intersects $CC'$ at $R$ and $B'Q$ intersects the line through $P$ parallel to $AC$ at $S.$ Let $T$ be the point of intersection of lines $B'C'$ and $QB$ and $T$ be on the other side of $AB$ with respect to $C.$ Prove that \[\angle BAT = \angle BB'Q \: \Longleftrightarrow \: |SQ|=|RB'| \]