Let $P$ be an interior point of the triangle $ABC$ which is not on the median belonging to $BC$ and satisfying $\angle CAP = \angle BCP. \: BP \cap CA = \{B'\} \: , \: CP \cap AB = \{C'\}$ and $Q$ is the second point of intersection of $AP$ and the circumcircle of $ABC. \: B'Q$ intersects $CC'$ at $R$ and $B'Q$ intersects the line through $P$ parallel to $AC$ at $S.$ Let $T$ be the point of intersection of lines $B'C'$ and $QB$ and $T$ be on the other side of $AB$ with respect to $C.$ Prove that \[\angle BAT = \angle BB'Q \: \Longleftrightarrow \: |SQ|=|RB'| \]
Problem
Source:
Tags: geometry, circumcircle, ratio, geometry proposed
04.01.2011 22:25
Should it be SQ = RB instead of RB'?
04.01.2011 23:35
Vo Duc Dien wrote: Should it be SQ = RB instead of RB'? No, the problem statement is true.
20.01.2011 21:14
I guess you have to be able to solve the problem first before being able to graph it. It's the reverse process to say the least. I have not been able to draw the graph less alone solve it. If you're not able to graph it, you will not solve it. Dien
20.01.2011 23:18
Can someone solve for the last time with a graph please ?
02.03.2011 13:19
crazyfehmy wrote: Let $P$ be an interior point of the triangle $ABC$ different from the centroid and satisfying $\angle CAP = \angle BCP. \: BP \cap CA = \{B'\} \: , \: CP \cap AB = \{C'\}$ and $Q$ is the second point of intersection of $AP$ and the circumcircle of $ABC. \: B'Q$ intersects $CC'$ at $R$ and $B'Q$ intersects the line through $P$ parallel to $AC$ at $S.$ Let $T$ be the point of intersection of lines $B'C'$ and $QB$ and $T$ be on the other side of $AB$ with respect to $C.$ Prove that \[\angle BAT = \angle BB'Q \: \Longleftrightarrow \: |SQ|=|RB'| \] But $S,Q,R,B'$ are collinear and $R,B'$ lie between $S,Q!$ Please refer to my diagram for the counterexample... it seems Geogebra does not agree to the problem statement. Can you please correct the problem? [asy][asy] import graph; size(300); real lsf = 0.5; pen dp = linewidth(0.7) + fontsize(10); defaultpen(dp); pen ds = black; pen ffcccc = rgb(1,0.8,0.8); pen qqwuqq = rgb(0,0.39,0); draw((0,5.92)--(-2,0)--(5,0)--cycle); draw((0,5.92)--(-2,0),blue); draw((-2,0)--(5,0),blue); draw((5,0)--(0,5.92),blue); pair parametricplot0_cus(real t){ return (0.94*cos(t)+5,0.94*sin(t)+0); } draw(graph(parametricplot0_cus,2.7509491252437344,3.141592653589793)--(5,0)--cycle,qqwuqq); pair parametricplot1_cus(real t){ return (0.94*cos(t)+0,0.94*sin(t)+5.92); } draw(graph(parametricplot1_cus,-1.2578093541863007,-0.8695918785813073)--(0,5.92)--cycle,qqwuqq); draw(circle((5.01,5.08),5.08),red); draw((-2,(+2.93+1.47*-2)/3.44)--(7.66,(+2.93+1.47*7.66)/3.44),blue); draw((-12.21,(-7.33+1.47*-12.21)/-3.56)--(5,(-7.33+1.47*5)/-3.56),blue); draw(circle((1.5,2.12),4.09),red); draw((0,(+8.54-4.46*0)/1.44)--(7.66,(+8.54-4.46*7.66)/1.44),blue); draw((2.51,(-11.32+4.04*2.51)/0.64)--(7.66,(-11.32+4.04*7.66)/0.64),blue); draw((-12.21,(+5.61-5.92*-12.21)/-2)--(7.66,(+5.61-5.92*7.66)/-2),blue); draw((-12.21,(-10.48+0.34*-12.21)/-4.29)--(3.15,(-10.48+0.34*3.15)/-4.29),blue); draw((-12.21,(+3.69+1.85*-12.21)/-4.51)--(2.51,(+3.69+1.85*2.51)/-4.51),blue); draw((-9.87,3.22)--(0,5.92),blue); pair parametricplot2_cus(real t){ return (0.94*cos(t)+3.15,0.94*sin(t)+2.19); } draw(graph(parametricplot2_cus,-2.739196770479163,-1.7269307767856577)--(3.15,2.19)--cycle,red+linewidth(1.2pt)); pair parametricplot3_cus(real t){ return (0.94*cos(t)+0,0.94*sin(t)+5.92); } draw(graph(parametricplot3_cus,-2.874409099783693,-1.8965074146760865)--(0,5.92)--cycle,red+linewidth(1.2pt)); dot((0,5.92),ds); label("$A$", (0.13,6.12),NE*lsf); dot((-2,0),ds); label("$B$", (-2.43,-0.56),NE*lsf); dot((5,0),ds); label("$C$", (5.13,-0.56),NE*lsf); dot((1.44,1.47),ds); label("$P$", (1.01,0.97),NE*lsf); dot((3.15,2.19),ds); label("$B'$", (3.28,2.37),E*lsf); dot((-1.15,2.53),ds); label("$C'$", (-1.52,2.84),NE*lsf); dot((2.51,-1.85),ds); label("$Q$", (2.29,-2.44),E*lsf); dot((2.94,0.85),ds); label("$R$", (3.07,1.03),E*lsf); dot((4.43,10.3),ds); label("$S$", (3.94,10.24),E*lsf); dot((-9.87,3.22),ds); label("$T$", (-9.74,3.4),NE*lsf); clip((-12.21,-4.09)--(-12.21,11.83)--(7.66,11.83)--(7.66,-4.09)--cycle);[/asy][/asy]
02.03.2011 23:19
I think you misunderstood the question. $S$ is the intersection point of $B'Q$ and the line through $P$ and parallel to $AC$ not $AB.$
04.03.2011 18:47
Parallels to $AB, AC$ through $P$ cut $QB$ at $X, Y$ and $AC$ itself cuts $QB$ at $Z.$ $\angle CBQ = \angle CAQ = \angle CAP = \angle BCP$ $\Longrightarrow$ $PC \parallel QB$ $\Longrightarrow$ $\frac{\overline{QX}}{\overline{QY}} = \frac{\overline{QB}}{\overline{QZ}}$ and $\frac{\overline{BT}}{\overline{BZ}} = \frac{\overline{PC'}}{\overline{PC}} = \frac{\overline{QB}}{\overline{QZ}} = \frac{\overline{RP}}{\overline{RC}}.$ It follows that $PX, RQ, CY$ are concurrent (or parallel). Equality of these ratios holds for any $P,$ such that $\angle CAP = \angle BCP.$ Then: $\overline{QS} = \overline{RB'}$ $\Longleftrightarrow$ $\triangle QYS \cong \triangle RCB'$ $\Longleftrightarrow$ $CY \parallel B'RSQ \parallel PX \parallel AB$ $\Longleftrightarrow$ $\frac{\overline{BT}}{\overline{BZ}} = \frac{\overline{QB}}{\overline{QZ}} = \frac{\overline{B'A}}{\overline{B'Z}}$ $\Longleftrightarrow$ $BB' \parallel AT$ $\color{red}{\Longrightarrow}$ $\angle BAT = \angle QB'B.$ Conversely, $\color{red}{\angle BAT = \angle QB'B}$ $\color{red}{\not\Longrightarrow}$ $\color{red}{\overline{QS} = \overline{RB'}}$. Equality of these angles combined with $\frac{\overline{BT}}{\overline{BZ}} = \frac{\overline{QB}}{\overline{QZ}}$ implies just central similarity of circumcircles $\odot(BAT) \sim \odot(QB'B)$ with center $Z.$ However, the points $A, B'$ collinear with this similarity center are not necessarily corresponding points on these circumcircles, because the line $ZB'A$ cuts each of these circles in 2 points, so that $\triangle BAT, \triangle QB'B$ are not necessarily centrally similar $\Longrightarrow$ lines $CY, B'RSQ$ are not necessarily parallel $\Longrightarrow$ segments $\overline{QS}, \overline{RB'}$ are not necessarily equal.
Attachments:
05.03.2011 11:28
Actually, I have realized that I wrote the problem with some mistake. I should have said that $P$ is not on the median of $BC$ instead of saying centroid. Now, I think your counter example does not work. Sorry for this typo.
05.03.2011 16:30
crazyfehmy wrote: Actually, I have realized that I wrote the problem with some mistake. I should have said that $P$ is not on the median of $BC$ instead of saying centroid... In that case, assume $\angle BAT = \angle QB'B$ and $BA \not\parallel QB', TA \not\parallel BB'$. Since $Z$ is external similarity center of the circles $\odot(BAT), \odot(QB'B)$, inversion with center $Z$ and power $ZB^2$ takes one circle to the other $\Longrightarrow$ $\overline{ZQ} \cdot \overline{ZT} = ZB^2 = \overline{ZB'} \cdot \overline{ZA}$ $\Longrightarrow$ $ATQB'$ is cyclic $\Longrightarrow$ $\angle BCC' = \angle BCP = \angle CAP = \angle B'AQ = \angle B'TQ = \angle B'C'C$ $\Longrightarrow$ $B'C' \parallel BC$ $\Longrightarrow$ $P$ is on A-median of $\triangle ABC,$ which contradicts the additional problem condition.
15.12.2020 22:43
Here is a solution by Burak Varıcı. $PS \parallel AC$ and $\angle CAP=\angle BCP$ gives $\angle QPC=\angle ACB=\angle AQB=\angle PQB$ concludes in $BQ \parallel PC$ Let $AP \cap BC= A'$, $B'C' \cap AP= U$ and $(B'PC') \cap AP =D$. We will first prove $D \neq A$. Assume contrary. Then we have $A \in (B'C'P)$ Thus $\angle PAB' = \angle B'C'P = \angle PCA' \Rightarrow B'C' \parallel BC \Rightarrow \angle C'AP = \angle C'B'P = \angle PBC$ results in $A'B^{2}=A'P \cdot A'A$. Similarly $A'C^{2} = A'P \cdot A'A$. So $A'B=A'C$. However $AP$ is not median. Contradiction $D \neq A$. We will prove when $D \in [AU]$. $A \in [DU]$ can be proven in similar way. We will first prove $SQ=RB' \Leftrightarrow AB \parallel B'Q$, then we will prove $AB \parallel B'Q \Leftrightarrow \angle BAT = \angle BB'Q$ Since $PS \parallel AB'$, we have $\frac{PQ}{PA}=\frac{SQ}{SB'}$. If $SQ=RB'$, then because of $BQ \parallel PC$ $\frac{PQ}{PA}=\frac{RB'}{RQ}=\frac{PB'}{PB} \Rightarrow AB \parallel B'Q$ If $AB \parallel B'Q$, we will use $BQ \parallel PC$ $\frac{RB'}{RQ}=\frac{PB'}{PB}=\frac{PQ}{PA}=\frac{SQ}{SB'} \Rightarrow SQ=RB'$ Hence $SQ=RB' \Leftrightarrow AB \parallel B'Q$ Since $PC' \parallel QT$, we have $\frac{UD}{UB'}=\frac{UC'}{UP}=\frac{UT}{UQ}$. Therefore $\triangle TDU \sim \triangle QB'U$ and $\triangle TDC' \sim \triangle QB'P$ If $\angle BAT= \angle BB'Q$, then $\angle C'AT=\angle BAT=\angle BB'Q=\angle PB'Q=\angle C'DT \Rightarrow T, A, D, C' $ are cyclic. So $\angle PAB=\angle DAC'=\angle DTC'=\angle B'QP \Rightarrow AB \parallel B'Q$ If $AB \parallel B'Q$, we will see $\angle DTC' = \angle B'QP= \angle DAC' \Rightarrow T, A, D, C'$ are cyclic.Thus $\angle BAT{\rm =}\angle C'AT=\angle C'DT=\angle PB'Q=\angle BB'Q$ Hence $AB \parallel B'Q \Leftrightarrow \angle BAT= \angle BB'Q$ In conclusion $SQ=RB' \Leftrightarrow AB \parallel B'Q \Leftrightarrow \angle BAT=\angle BB'Q$