Problem

Source: Baltic Way 2007

Tags: geometry, circumcircle, geometry proposed



In a convex quadrilateral $ABCD$ we have $ADC = 90^{\circ}$. Let $E$ and $F$ be the projections of $B$ onto the lines $AD$ and $AC$, respectively. Assume that $F$ lies between $A$ and $C$, that $A$ lies between $D$ and $E$, and that the line $EF$ passes through the midpoint of the segment $BD$. Prove that the quadrilateral $ABCD$ is cyclic.