Problem

Source: Baltic Way 2007

Tags: geometry, circumcircle, geometric transformation, dilation, similar triangles, geometry proposed



Let $M$ be a point on the arc $AB$ of the circumcircle of the triangle $ABC$ which does not contain $C$. Suppose that the projections of $M$ onto the lines $AB$ and $BC$ lie on the sides themselves, not on their extensions. Denote these projections by $X$ and $Y$, respectively. Let $K$ and $N$ be the midpoints of $AC$ and $XY$, respectively. Prove that $\angle MNK=90^{\circ}$ .