Problem

Source: Baltic Way 2007

Tags: inequalities, quadratics, function, logarithms, induction, rearrangement inequality, algebra proposed



For a positive integer $n$ consider any partition of the set $\{ 1,2,\ldots ,2n \}$ into $n$ two-element subsets $P_1,P_2\ldots,P_n$. In each subset $P_i$, let $p_i$ be the product of the two numbers in $P_i$. Prove that \[\frac{1}{p_1}+\frac{1}{p_2}+\ldots + \frac{1}{p_n}<1 \]