Find all functions $g:R\rightarrow R$ for which there exists a strictly increasing function $ f:R\rightarrow R $ such that $f(x+y)=f(x)g(y)+f(y)$ $\forall x,y \in R$.
Source:
Tags: function, algebra unsolved, algebra
Find all functions $g:R\rightarrow R$ for which there exists a strictly increasing function $ f:R\rightarrow R $ such that $f(x+y)=f(x)g(y)+f(y)$ $\forall x,y \in R$.