Problem

Source: Baltic Way 2010

Tags: modular arithmetic, number theory proposed, number theory



Let $p$ be a prime number. For each $k$, $1\le k\le p-1$, there exists a unique integer denoted by $k^{-1}$ such that $1\le k^{-1}\le p-1$ and $k^{-1}\cdot k=1\pmod{p}$. Prove that the sequence \[1^{-1},\quad 1^{-1}+2^{-1},\quad 1^{-1}+2^{-1}+3^{-1},\quad \ldots ,\quad 1^{-1}+2^{-1}+\ldots +(p-1)^{-1} \] (addition modulo $p$) contains at most $\frac{p+1}{2}$ distinct elements.