From a sequence of integers $(a, b, c, d)$ each of the sequences \[(c, d, a, b),\quad (b, a, d, c),\quad (a + nc, b + nd, c, d),\quad (a + nb, b, c + nd, d)\] for arbitrary integer $n$ can be obtained by one step. Is it possible to obtain $(3, 4, 5, 7)$ from $(1, 2, 3, 4)$ through a sequence of such steps?