Let $a_0,a_1,a_2,\ldots $ be a sequence of positive real numbers satisfying $i\cdot a_2\ge (i + 1)\cdot a_{i_1}a_{i+1}$ for $i=1, 2, \ldots $ Furthermore, let $x$ and $y$ be positive reals, and let $b_i=xa_i+ya_{i-1}$ for $i=1, 2, \ldots $ Prove that the inequality $i\cdot b_2\ge (i + 1)\cdot b_{i-1}b_{i+1}$ holds for all integers $i\ge 2$.