Problem

Source: Baltic Way 2001

Tags: algebra unsolved, algebra



There are $2n$ cards. On each card some real number $x$, $(1\le x\le 2n)$, is written (there can be different numbers on different cards). Prove that the cards can be divided into two heaps with sums $s_1$ and $s_2$ so that $\frac{n}{n+1}\le\frac{s_1}{s_2}\le 1$.