Problem

Source: Baltic Way 2001

Tags: function, algebra proposed, algebra



The real-valued function $f$ is defined for all positive integers. For any integers $a>1, b>1$ with $d=\gcd (a, b)$, we have \[f(ab)=f(d)\left(f\left(\frac{a}{d}\right)+f\left(\frac{b}{d}\right)\right) \] Determine all possible values of $f(2001)$.