Let $a_1, a_2,\ldots , a_n$ be positive real numbers such that $\sum_{i=1}^na_i^3=3$ and $\sum_{i=1}^na_i^5=5$. Prove that $\sum_{i=1}^na_i>\frac{3}{2}$.
Source: Baltic Way 2001
Tags: inequalities proposed, inequalities
Let $a_1, a_2,\ldots , a_n$ be positive real numbers such that $\sum_{i=1}^na_i^3=3$ and $\sum_{i=1}^na_i^5=5$. Prove that $\sum_{i=1}^na_i>\frac{3}{2}$.