In a triangle $ABC$, the bisector of $\angle BAC$ meets the side $BC$ at the point $D$. Knowing that $|BD|\cdot |CD|=|AD|^2$ and $\angle ADB=45^{\circ}$, determine the angles of triangle $ABC$.
Source: Baltic Way 2001
Tags: geometry, circumcircle, geometry proposed
In a triangle $ABC$, the bisector of $\angle BAC$ meets the side $BC$ at the point $D$. Knowing that $|BD|\cdot |CD|=|AD|^2$ and $\angle ADB=45^{\circ}$, determine the angles of triangle $ABC$.