Problem

Source: Baltic Way 2001

Tags: geometry, parallelogram, geometry proposed



The points $A, B, C, D, E$ lie on the circle $c$ in this order and satisfy $AB\parallel EC$ and $AC\parallel ED$. The line tangent to the circle $c$ at $E$ meets the line $AB$ at $P$. The lines $BD$ and $EC$ meet at $Q$. Prove that $|AC|=|PQ|$.