amparvardi wrote:
For a real number $t$ and positive real numbers $a,b$ we have
\[2a^2-3abt+b^2=2a^2+abt-b^2=0\]
Find $t.$
$2a^2-3abt+b^2=2a^2+abt-b^2$ $\implies$ $4abt=2b^2$
Plugging $abt=\frac {b^2}2$ in $2a^2+abt-b^2=0$, we get $4a^2=b^2$ and so $b=2a$ and $\boxed{t=1}$
we have $4abt=2b^2$
so, $2at=b$
or $ 2a^2-3a(2at)t+4a^2t^2=0$
or $2at^2=2a^2$
or $t^2=1$ since $t=\frac{b}{2a}>0$
we have $ t=1$
then see $t=1$ and the possible $a,b$ are $a=2b$ for $a\in \mathbb R^+$